
N
P ~ A0 *OS$ flO CORNELL LRIIV ITHACA N Y DEPT OF COMPUTER SCIENCE F/S 12/1

A NOTE ON RABIN’S NEAREST—NEIGHBOR ALGORITHM. Li)
197$ S FORTUNE. ..J HOPCROFT N000114—76—C— OO16

UNCLASSIFIED CU—CSO—TR—7$—3*O NI.
i~~r

END
OATE

RLNEO

OOC

‘I

I

I

I.O~~H~~ I~~
_ _ _ _

~~~~~~ IIP~
I I.’

~~L8

III~i1 ‘ .25 llIB~ . IIIII~
MICROCOPY RESOLUTION TEST CH~~T

N Af l O A A L  BUREAU OF SrA ~ DA R OS



F ~~~~~~~~~~~

— -

~

LEVEL’r

A NOTE ON

RABIN’S NEAREST-NEIGHBOR ALGORITHM

by

Steve Fortunet

John Hopcroftt>-
0~

D DC
~~~~~~~~~~~

A u G 29 1978

IJ~IS~t~ L5U ~J 1~5E

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

tResearch was supported under grant number ONR N00014-76-c-oo].8.

fThISTRIBUT~~~~~TAT~ ç~~~.~ A

~
Approvej for public releaae;

[
~

Distrjbut~on Unlirrilted

3c f/ ,1
’

J / ~~/ ~~~~~~~~~~~~~~ L’

~~~~~~~ / )



A NOTE ON RABIN’S NEAREST-NEIGHBOR ALGORITHM

H by

Steve Fortune

John Hopcroft

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

Abstract

Rabin has proposed a probabilistic algorithm for finding

the closest pair of a set of points in Euclidean space. His

algorithm is asymptotically linear whereas the best of the

known deterministic algorithms take order nlogn time. We

show that at least part of the speedup is due to the model

rather than the probabilis tic nature of the algorithm.

Keywords

probabili stic algorithms , nearest neighbor , hashing

W~Ite SectIon
I •~C
J r*AKH QDN CEO

JU$TIFICATION 

I, 

J III VTIO*/Ay~~jj  fLiT ! 

~t A L ~d’~ £i~cjg~.



1. Introduction

One notion that has received some attention recently is

that of a probabilis tic algorithm. An algorithm is probabili stic

if at certain steps it chooses a number randomly to determine

the next step and at all other steps it is determini stic. The

expected running time of such an algorithm on a given input is

obtained by averaging over all possible random choices of the

algorithm on that input. The running time of the algorithm as

a whole can be measured either by averaging the expected running

time over all inputs or by taking the worst case of the expected

running time. In [1] the former analysis is used; in [4] and

[6] the latter analysis is used.

Rabin [4) has proposed a probabilistic algorithm for finding

the closest pair of a set of points in Euclidean space. The

running time of his algorithm using the worst-case expected-time

measure is linear. This compares with time O(n log n) for the

best of the known deterministic algorithms for this problem [21

[5] [7] .

Rabin’s algorithm works by randomly choosing a subset of

the points ana recursively using the algorithm to find the dis-

tance between the nearest neighbors of the subset. Rabin is

able to show that, with very high probability , the distance be-

tween the nearest neighbors of the subset is a very good approx-

imation to the distance between nearest neighbors in the whole

set. Using this approximation the distance between the nearest

neighbor in the whole set can be found in expected linear time.

The algorithm’s use of randomness in choosing the subset is

crucial.

~~~~~~~~~~


I

—2—

Rabin ’s algorithm also assumes constant time arithmetic

operations. In particular, he assumes that a special operation ,

described below , which is similar to hashing can be performed in

constan t expected time . It follows from [3) that the special

operation can indeed be implemented by a probabilistic algorithm

to run in constant expected time given that evaluating a hash

function takes constant time.

The fast algorithms in [1], [4], and [61 all have the pro-

perty that for some sequence of random choices an incorrect

answer could result. Rabin ’s algorithm is apparently the only

known example other than hashing of an error-free probabilistic

algorithm which runs faster than the deterministic equivalent.

In this paper we present an algorithm to find the nearest

neighbor which runs in time O(n loglog n). The algorithm does

not make any random choices; however it does assume that the

special operation uses only constant time. The conclusion we

reach is that most of the speedup of Rabin ’s algori thm is due

to the hashing, and not to the probabilistic nature of the basic

algorithm. It would be interesting to find examples of prob-

abilistic algorithms that are faster than their deterministic

counterparts and for which the speed does not come from the

capability to hash.

—3—

2. The Algorithm

We describe the special operation, call it FINDBUCKET , in

more detail. We are given a set of real numbers, say with minimum

value rmjn, and an interval size s. We wish to partition the set

into blocks such that each block is nonempty and contains precisely

the reals falling in an interval Er . +ns, r . +(n+l)s), for somemm mm
integer n 2. 0. To do this we have an array of linked lists, which we

will call buckets. Each bucket is to hold the reals falling in one

interval . The number of buckets is as large as the number of reals.

FINDSUCKET , given the arguments a real number and the interval size

(and implicitly the array) returns the index of the bucket into which

the real is to be stored. FINDBUCKET returns the same index for all

reals falling in the same interval; it is guaranteed to return different

indices for reals falling in different intervals. We assume no other

relationship between the real and the index returned by FINDBUCKET.

Rabin suggests that FINDBUCKET be implemented by dividing the real

by the interval size, truncating the quotient to an integer , and

hashing on the integer.

The algorithm for nearest neighbor is completely general;

however for simplicity we will assume the points are real numbers

appearing on the line. The extension to higher dimensioned spaces

should be obvious.

The algorithm is based on the following observation: suppose

we can find an interval size r such that at most one point falls

within each interval and there are two nonempty adjacent intervals.

Then if we place points into buckets using an interval size of

2r, the closest pair of points must either be within the same

interval or in adjacent intervals. The total number of points

which can be within one interval at size 2r and the number of

adjacent intervals are constants depending only on the dimension

of the space. Hence for each point only a constant number of

other points need be examined. The buckets which contain points

in adjacent intervals can be found using FINDBUCKET. Thus,

given the interval size r the total amount of work to find the

closest pair is linear in the number of points. We write a

recursive procedure FINDINT to find the interval size r.

FINDINT is called with a set of n points as parameter. It

selects an initial interval size by dividing the difference

between the maximum and minimum point by n. The main ioop of

FINDINT is to remove a point from the set and use FINDBUCKET

to place it into a bucket. This continues until some bucket

has /i~ points, at which time FINDINT is called recursively

for each bucket with two or more points. The interval size

is set to the minimum of the interval sizes returned by the
• recursive calls. The points already placed into buckets

are then temporarily discarded and the main loop is restarted

with the first point which has not yet been inser ted into a

bucket. This process continues until each point has been in-

serted into a bucket once.

____________________________ ______________________________

I,

— 5—

When the main loop has been executed for every point, and

a tentative interval size found, the entire set of points is

placed into buckets at the current interval size. FINDINT is

then called recursively on all buckets containing two or more

points; the output of the algorithm is the minimum of the size

returned by all recurs ive calls. A pidgin ALGOL description

of FINDINT is given below.

Input: A set S of n points.

Output: An interval size such that no two points fall in

the same interval and such that there are two adjacent nonempty

intervals.

1. PROCEDURE FINDINT(S):

2. intervalsize 4- (max(S) - mm (S)) / n;
3. T 4- S;

4. WHILE T is not empty DO

5. WHILE all buckets have fewer than iW points and

T is not empty DO

6. remove a point r from T;
7. B 4- FINDBUCKET(intervalsize, r);

8. insert r into bucket B;
9.

10. FOR each bucket B containing more than one element DO

11. intervalsize 4— min (in tervalsize, FINDINT(B))
12. END;

13. empty all buckets;

14. END;

15. FOR each r jfl S DO

16. B 4- FINDBUCKET(intervalsize , r) ;
17. insert r into bucket B;

18. END;

19. FOR each bucket B containing more than one element DO
20. intervalsize 4- znin(intervalsize, FINDINT(S));

21. END;

22. RETURN(intervalsize);

23. END

—6—

To analyze the running time of the algorithm, first note

that exclusive of recursive calls , FINDINT takes time cn , for

some c. Recursive calls of size less than 256 take only a

constant amount of time ; we will assume that the cost of such

calls are absorbed into the constant c. We show by induction

that for n�256 , FINDINT takes total time dn loglogn , fort some

d.

Let us call the process of one iteration of the WHILE

loop of lines 5-9 , i .e. unti l some bucket gets b4~ points , a

level. Clearly , there are at most ~c levels. Let us call

the interval size at line 15 the tentative interval size.

It is possible that more than one point can fall into a bucket

at the tentative interval size. This can happen if two points

would fall into the same bucket but were processed at different

levels. However, each such bucket can contain at most one

point from each level. Hence the number of points per bucket

at line 19 is bounded by the number of levels, i.e. /~~.

From the above discussion it is clear that FINDINT

never solves a recursive prob lem of size bigger than /~~.

If all subprob lems were disjoint, it would be easy to show

that the running time was O(n loglogn). However it is pos-

sible that a point might appear in a recursive call at both

lines 11 and 20. Hence a more complicated analysis is

necessary..

I : . .~~~~~
_
~~T:E~~TTJ1 :. ~~

11

—7—

For the following , let us also say that the processing

of lines 19 through 22 is a level by itself. We wish to

coun t the number of interva ls wh ich are guaran teed to be

nonempty at the interval size at the end of each level. This

will enable us to bound the total work involved in the recursive calls.

Suppose the first recursive call at some level has b

points. After the call, the points are all separated by the

new interval size. But since all the points were in one

interval at the start of the level, af ter the call there are

b—i new nonempty intervals. Suppose the second call at the

level has C points. It is possible that these points have

already been partially separated by the first call. But since

all c points were in one interval at the start of the

level , af ter the second call there are a total of (b—i) + (c—i)

new nonempty intervals. Continuing in this way for all recursive

calls at a leve l and all levels , we get that there are at least

k

~ (b.— l) nonempty intervals, where k is the number of recursive
i=l 1

calls and b~ the size of the ith recursive call. As at the

end of the algorithm there are n nonempty intervals , we have
k

(1) z (b.— 1)�n
i=]. 1

The amount of work involved in the recursive calls is

bounded by
k

(2) E db~ loglog b .
1

I

(Note that we have alr eady absor bed the cos t of recur sive

calls of size less than 256 into general overhead. But (2)

is certainly an upper bound on the amount of work necessary.)

We wish to maximize (2) subject to (1), and the constraint

that 2�b1� ~‘?~ for each i.
We claim (2) is maximized when each b

~
except possibly

one is(y~J. To see this first note that if r�s>2

(r+l) loglog (r+1) + (s—i) loglog (s—l) � r loglog r + s loglog s

hence (2) is augmented by increasing a b
~

by 1 at the expense

of decreasing a smaller b~ by 1. Second , if b1=2 , for some

i, since 2 loglog 2 = 0, (2) is augmented by deleting b
~

and

adding 1 to some other b
3
. (1) is then still satisfied.

In this case (all but possibly one

k�[‘~
7

�V ~ + 4 for sufficiently large n.
LP’?~ j-i

So we have
k
E db.. loglog b. < d ~~ • (loglog ~~~~~(v ’~~ ÷ 4)1 1.

< dn loglo gn - dn + 4d V~ (loglogn-l)

� dn loglogn -

where the last line holds as n�256. The total work involved

is thus boun ded by cn + dn loglogn - which is les s than

chloglogn if d>2c.

3. Acknowledgement

The authors wish to thank the referee for his careful reading

of the manuscript and his helpful comments.

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

‘ I

-~~~~~~~~~~~~~ .~~~~~~~~
•

~~
- . , - -~~

—..—-— -
~~~ 

-. 

~
. 

I

F

[1] Angluin , D. and L.G. Valiant. “Fast Probabilistic
Algorithms for Hamiltonian Circuits and Matchings” ,
Proc. of the Ninth Annual ACM Symposium on the Theory
of Computing (l977~ , pp. 30-41.

[2] Bentley , J.L. and M.I. Shainos . “Divide-and-Conquer
in Multidimensional Space” , Proc. of the Eighth Annual
ACM Symposium on Theory of Computing (1976), pp. 220-230.

[3] Carter, J.L. and M.N. Wegman. “Universal Classes of
Hash Functions ” , Proc. of the Ninth Annual ACM Symposium
on Theory of Computing (1977), Pp. 106-112.

(4] Rabin , M. “Probabilistic Algorithms ” , appearing in
Algorithms and Complexij~y (1976), Academic Press ,
N.Y., N.Y., J. Traub , Ed.

[5] Shamos , M . I .  “Geometric Complexity ” , Proc. of the
Seventh Annual ACM Symposium on Theory of Computing,
(1975), pp. 224—233.

[6] Solovay , R. and V. Strassen. “Fast Monte-Carlo Test
for Primality ” , SIAM Journal on ç~ pputina Vol. 6,1
(1977) pp. 84—85.

[
~

) Yuval , G. “Finding Nearest  Neighbours ” , Informat ion
Processing Letters, Vol. 5,3 (1976), pp. 63—65.

Ii 

______ _ _ _  _ _  _ _ _  _ _ _ _  

. 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _



r ~~~~~~~~~~~~~~ 
.. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~
-- -

~~
_----- .-

—~~

Sec~~nt~ ~~~~~~~~

r,.,s ,, f,.~.. r , . , , ,
~ r ~~~~

DOCUMENT CONTROL DATA •

,~~
.

~~~~~~~ 
, ,, 

~~~~~~~ ,. p. ~~~~~~~~~~~~~~~~~~~~

0 4 1 G 1 N 4 t I NC. A C t * 1 I t~~ l(. IbtJ I .bf . , lC .,,,lh u,j
.

go. flL. I ’ C J . l t Si C U j i l, C~ i i I t s I c ,

Computer Science Department _______________________________
Cornell Univer’ity 2b. GkOuP

Ithaca , NY 114853
) I.LPO1~~ ~~I T L I

A Note on Rabin ’s Nearest:Neighbor Algorithms
-

• o .uid.inc tuc ,v dote.)

echnic al / t .L
-~~~~~~~~

t *u gr,~. . i ~ ? fl.,rnej

(~~~~~~
teve o rtune

_ _

s . c . L Po R ;~~~~~~~~~~~~~~~ (L~?..i�~ ‘7c~:.
_l
~

70 . T O T A L NO O P
~~~~~~~~.9r..3

’
~~~ 

O~ F L V S

$ O N T t F . S C T O R O N A ~.~ 0. 9fl. O R I~~~~4 A T O N LV O F F T

B. P R O J E C T N O . ~~~~~~~~~~

C. . ~ IF. 0 ~ V F. (P0 P T N O S) (Afly oth ’ r ~~~~~ef ~ thi.t ri;.y b~Sb,. rrpo.t)

none
d.

I~~. O I S T R I ~~ L J T t O N S T A T (M E N T

Distribution is unlimited

t I . S U P P L L M E N T A R Y N OT C S 12 . S P O NS O R I NG M I L I 1 A c T A C T I V I T Y

13. A B S T R A C T

abin has proposed a probabilistic algorithm for finding the closest
pair of a set of points in Euclidean space. His algorithm is asymptotically
linear whe he best of the known deterministic algorithms take order niogn
time . e show tha ~t least part of the speedup is due to the model rather
than the probabilistic nature of the algorithm

U . O~7 ~.) ~~~
.

DD rO RM 1473 (I’AGE 1)

S/N 010 1 •807 .6811 Secut,t~’ CI.,t. ’.tIi ’ .’t ,,.,, A — 314011

— ~~~~

, —- .
~~

—- ‘
~~~

~“



- ~ -

~~~~S” c u t i t v  CLFI~~% F (IF - . I t % 0 f l
- -~~ — - —s -- _ _ _ _-

• I A . LI,4,c A L I N t . $5 L t ~~~.’ C
~~EY W O R D S .. ______ ______ ______ ______ ~~~~~ - .- R O L E W Y R O L L W Y S t O L E W Y

probabilistic algorithms
nearest neighbor -

hashing
-

I..

i5b t *40V 1151473 ((JA CI<)
—

-

. —— ____ ——

1~~11 O~~0I~~* 07 .A ~~~ I Secutity C1stc f icstu ~n A • 3 I 4 o~L _ _

.

,—~~.— . F~Il~~. .J’W.~~~~0
~~~~~~~~~~ 

._ .. -

-F ~~~~~~~ — ..- -
- _ -~_:~~~ A~~ “



I

a


